Les groupes sanguins (Hardy-Weinberg)

On a vu qu'une population était à l'équilibre de Hardy-Weinberg pour un gène si les fréquences alléliques et génotypiques étaient constantes de génération en génération.

On s'intéresse à la répartition d'une population de 700 individus selon les différents groupes sanguins. On connaît la fréquence allélique des allèles O, A et B, correspondant respectivement à o=0,536,p=0,188 et q=0,276. On rappelle que l'allèle O est récessif, c'est-à-dire qu'un individu de génotype A//O appartient au groupe sanguin A, et que les allèles A et B sont co-dominants, c'est-à-dire qu'un individu de génotype A//B appartient au groupe sanguin AB.

1. On considère que notre population est à l'équilibre de Hardy-Weinberg. Répertorier dans un tableau à double entrée les différents génotypes obtenus en fonction de l'allèle transmis par chacun des parents.

Voir question suivante.

2. On rappelle que si p est la fréquence de l'allèle A, alors la fréquence du génotype A//A est p^2 . Noter dans le tableau précédent la fréquence associée à chaque génotype.

	А	В	0
А	A//A	A//B	A//O
	p^2	pq	op
В	B//A	B//B	B//O
	pq	q^2	oq
0	O//A	O//B	0//0
	op	oq	o^2

- 3. On cherche à déterminer le nombre d'individus appartenant au groupe sanguin A dans notre population. Tous les résultats seront arrondis à 0,001.
 - (a) Quels sont les différents génotypes possibles pour un individu appartenant au groupe sanguin A?

 Les individus de groupe sanguin A ont un génotype A//A ou A//O.
 - (b) D'après le tableau précédent, quelles sont les fréquences associées à chacun de ces génotypes? Notre population étant à l'équilibre de Hardy-Weinberg, la fréquence du génotype A//A est égale à p^2 et celle du génotype A//O est égale à 2op.
 - (c) En déduire la fréquence d'individus du groupe sanguin A dans notre population.

Probabilités 1

On en déduit que la fréquence d'individus de groupe sanguin A est égale à $f_A=p^2+2op=0,188^2+2\times0,188\times0,0536=0,237.$

(d) En déduire le nombre d'individus appartenant au groupe sanguin A.

On s'intéresse à une population de 700 individus, donc le nombre d'individus appartenant au groupe A est égal à : $0,237 \times 700 = 165,9$ soit 166 individus.

4. En suivant le même raisonnement, déterminer le nombre d'individus appartenant aux groupes B, AB et O.

Le groupe sanguin B regroupe des individus de génotype B//B et B//O. La fréquence de ce groupe est donc égale à $f_B=q^2+2oq=0,276^2+2\times0,276\times0,0536=0,372$ soit 260 individus. Le groupe sanguin AB ne comprend que des individus de génotype A//B. La fréquence de ce groupe est donc égale à $f_{AB}=2pq=2\times0,276\times0,188=0,104$ soit 73 individus. Le groupe sanguin O ne comprend que des individus de génotype O//O. La fréquence de ce groupe est donc égale à $f_O=o^2=0,536^2=0,287$ soit 201 individus.

Probabilités 2