Getting started with NumWorks (Statistics)

This year we will be using the NumWorks graphing calculator in our math class! This activity will help you get to know the calculator and some of the features we will be using in this class.

The keyboard

Before we get started, let's take a closer look at the keyboard. You'll see it is arranged into three different zones.

In the bottom section, you will find basic operations and the number pad. Notice that there is only one minus key. Here you will also find the (A_{ns}) key which allows you to use the most recent result in your calculations. To compute a calculation, press the (E_{NE}) key.

In the middle section, you will find some advanced functions and commonly used values. What keys do you recognize in this section?

In the top row of the Advanced Functions section, you will find the $\overline{\mathfrak{m}}$ key which gives you access to the yellow option of each key. The $\overline{\mathfrak{m}}$ key can be used select the alpha characters on each key. The $\overline{\mathfrak{m}}$ key is a quick way to enter x (or other variables as needed). The $\overline{\mathfrak{m}}$ key opens a menu of stored values. The **Toolbox** $\overline{\mathfrak{m}}$ provides additional functions organized in categories. Finally, the $\overline{\mathfrak{m}}$ key works just like on your computer or phone to backspace.

The top section is the Navigation Zone where you have arrow keys to navigate the screen, the $\textcircled{\}$ key to make selections and a $\textcircled{\}$ key to take you back to a previous menu. The $\textcircled{\}$ button will return you to the home screen and the $\textcircled{\}$ button turns the calculator on and off.

Navigate around the home screen. How many applications are there?

The applications

The NumWorks calculator is app-based, just like a phone. That means you will open different applications based on the task you are completing. Let's dive into some of the apps to see what they do!

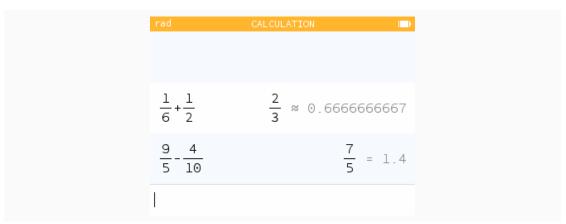
Calculation

The Calculation application is where you will do all of your... calculations!

Navigate to the Calculation application and open it by pressing or.

1. Let's add some fractions! By hand, add $\frac{1}{6} + \frac{1}{2}$.

$$\frac{\frac{1}{6} + \frac{1}{2}}{= \frac{1}{6} + \frac{3}{6}}$$
$$= \frac{4}{6}$$
$$= \frac{2}{3}$$


2. Check your work by using the calculator. What do you notice about your answer?

To input $\frac{1}{6}$, press the (*) key followed by the (*) key. Then press the (*) key. Use the key to get out of the denominator before adding the other fraction.

rad	CALCULATION	
$\frac{1}{6} + \frac{1}{2}$	2/3 ≈ 0.66666666	57

The calculator provides both the simplified fraction and decimal approximation.

3. Use your calculator to subtract $\frac{9}{5} - \frac{4}{10}$.

4. How do the results of the last two calculations differ?

For the first calculation, the decimal result was an approximation and the "approximately equal to" symbol was used. In the second calculation, the decimal result was exact and the "equal to" symbol was used.

5. Navigate up into the *calculation history* and click on the three dots on the right side of the screen to view the *additional results*. What additional results are provided for this calculation?

Use the A key to navigate into your *calculation history*. Navigate over to the three dots and press .

rad	CALCULATION		rad	C#	ALCULATION	
			I	Addit	ional results	
$\frac{1}{6} + \frac{1}{2}$	2/3 ≈ 0.66666	66667	1 6	$1\frac{2}{5}$	Mixed	fraction 57
94	- 7			7=5×1+2	Euclidean	division
5-10	$\frac{1}{5} = 1$. 4	9 5			. 4

The additional results for $\frac{7}{5}$ include the mixed fraction and Euclidean division representations.

6. Return to the editing bar and open the **Toolbox**. Navigate through the Toolbox and list any functions that you know.

rad		CALCULATION	
		Toolbox	
	x	Absolute value	
	n∫x	nth root	
	$\log_{a}(\mathbf{x})$	Logarithm base a	
	Calculus	•	
·			

Press the key until you return to the editing bar. Open the **Toolbox** by pressing the key. Student responses will vary.

7. How many ways are there to select four plants out of the six that are available? Within the **Toolbox** (a), open the **Probability** section and select **Combination**. Input $\binom{6}{4}$.

	rad	CALCULATION	
	(6)		
	4		15
	()		
	1		
There are 15 ways to sel	ect 4 plants out of	6	

Grapher

Graphing relations and functions is simple within the **Grapher** application.

Our goal will be to graph the linear function f(x) = 3x + 5, look at its features and view the table.

Notice that there are three tabs at the top of the screen: **Expressions**, **Graph** and **Table**.

The Expressions tab is where you will enter your function.

1. Press \circledast to Add an element. There are some templates you can use when entering expressions. For this example, select the f(x) = x template.

rad		GRAPHER		
	Expressions	Graph	n Table	
		se a templa [.]	te	
A	Empty			
	f(x)=x		Function	
	x+y+l=0		Line	
	x+y≤0		Inequality	
	x ² +v ² +x·v	+x+v=0	Conic	

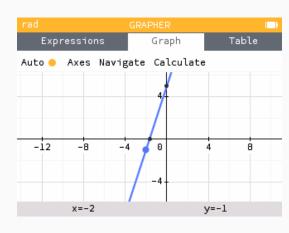
2. Input the function f(x) = 3x + 5.

rad	GRAPHER	()
Expressions	Graph	Table
f(x)=3x+5 Linear function		
Add an eleme	nt	
Plot graph	Display	values

To enter the function f(x) = 3x + 5, first use the \checkmark key to move your cursor to the left of the x and add the coefficient 3. Now use the \triangleright key and finish the expression. Once your function is completed, press \circledast or $\overleftarrow{\mathsf{exe}}$.

The Graph tab will plot the graphs of your functions and provide tools for exploring key characteristics.

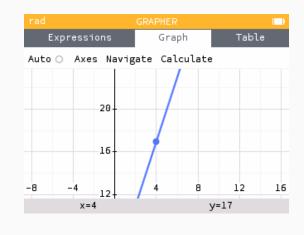
1. View the graph. The **auto** zoom generally provides a window that you will find useful.


rad		GRAPHER	(III)
Exp		Graph	Table
Auto 😑	Axes Navig	ate Calculate	9
		1	
		4	
		/	
		2	
-12	-8 -4	1 0	4 8
		-4	
	x=-1.31	3	y=1.07

To view the graph, either navigate down to **Plot graph** or up and over to the **Graph** tab and press .

- 2. Press the $+^{2}$ and keys to zoom in and out.
- 3. Navigate to x = -2. What is the value of f(x)?

Calculations – Graphing – Boxplots – Histograms – Regression


Use the (and keys to trace the line.

When x = -2, f(x) = -1.

4. What is the value of f(x) when x = 4?

Press the 4° key followed by ∞ as a shortcut to quickly navigate to x = 4.

When x = 4, f(x) = 17.

5. Open the **Calculate** menu. Then open the **Find** menu. This menu provides tools for finding key characteristics of our graph. Use the **Inverse image** option to determine the value of x when f(x) = 10.

					(III)			
Expressions	Graph	Table	Expressions	Graph	Table	Expressions	Graph	Table
Ca	lculate on f(x)		Calculat	e on the blue	curve		X given Y	
	Find			Find			4	
				X given Y			8	
X given Y		•			10			
Maximum			У		10		4	
				Confirm				
Minimum								
Zeros							4	4 8
20103						x=1.666667		y=10

When y = 10, x = 1.667.

The **Table** tab provides a table of points for your function.

1. Open the Table tab.

To view the table, navigate up and over to the **Table** tab and press .

rad	GRAPHER		()
Expressions	Grap	h	Table
Exact results 🔾	Set the in	nterval	
x	f(x)	1
0		5	
1		8	
2		11	
3		14	
4		17	
5		20	
6		23	
7		75	

2. The table displays the x and f(x) values for x = 0 through x = 10. Copy down the values of f(x) in the table below.

Х	0	1	2	3	4	5	6	7	8	9	10
f(x)											

Х	0	1	2	3	4	5	6	7	8	9	10
f(x)	5	8	11	14	17	20	23	26	29	32	35

3. What is the value of f(x) when x = 100?

Highlight any of the current x-values and type 100. Press (EXE). You will now see the value of f(x) in the table.

rad		GR	APHE	R			
Ex	pressions		Gr	aph		Table	
Exact	results 🔿	Set	the	inter	val		
	х	_	f	(x)			
	100				305		
	1				8		
	2				11		
	3				14		
	4				17		
	5				20		
	6				23		
	7				25		

When x = 100, f(x) = 305.

Statistics

The **Statistics** application is great for studying graphical representations of data sets and viewing summary statistics

Open the Statistics app and notice the three tabs at the top of the screen: Data, Graph and Stats.

The **Data** tab is where you will enter your data.

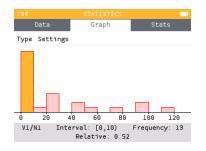
The table below shows the number of text messages sent in the past 24 hours by the students in a class.

Table 1: Number of texts sent in past 24 hours

0 7	7 1	29	25	8	5	1	25	98	9	0	26	8	118	72	0	92	52	14	3	3	44	5	42
-----	-----	----	----	---	---	---	----	----	---	---	----	---	-----	----	---	----	----	----	---	---	----	---	----

1. On the Data tab, enter the values into the V1 column. What do you think N1 represents?

rad	STATISTICS	
Data	Graph	Stats
Value V1	Frequency N1	Value V2
0	1	- I
7	1	
1	1	
29	1	
25	1	
8	1	
5	1	
1	1	
75	1	


N1 represents the frequencies. It will default to 1.

2. Once your data is entered, navigate back up to the top of the column and press (a) to open the V1 column options. Sort your data.

Data	Graph	Stats
	V1 column options	5
Sort	Sort by increa	sing values
Fill w	ith a formula	
Show ir	n Graph and St	tats 💽
Clear t	table V1/N1	
Cumulat	tive frequence	ies

To view graphical representations of your data, you will use the **Graph** tab.

1. Open the **Graph** tab and create a histogram for this data.

- 2. Navigate through the histogram.
- 3. The histogram is showing "bins" of size 10. Change the **Bin width** to 20 using the histogram **Settings**. What do you notice about the distribution?

			0.1				rad			
Data	Graph	Stats		Data	Graph	Stats		Data	Graph	Stats
Type Settings					Settings		Туре	Settings		
				Bin width	1	20				
				X start		0				
			_		Confirm		-0	40		120
							V1/	Nl Inte	erval: [0,20) Relative: 0.	Frequency: 14 56

Most of the data appears closer to 0 but a few students send a lot of texts (skewed right).

4. You can also view a boxplot of the data on number of texts sent. Change the graph from a histogram to a boxplot using the **Type** menu.

rad			rad		()	rad		
Data	Graph	Stats	Data	Graph	Stats	Data	Graph	Stats
Type Settings				Туре		Type Settings		
			Hist	ogram				
			на вохр	lot				- ·
			Cumu	lative freq	uencies	¥ .		
			, Norm	al probabil	ity plot	0	40 80	120
						V1/N1	M-	inimum: O

5. Navigate through the boxplot. Record the values shown in the bottom banner.

The bottom banner provides the 5-number summary:

Minimum	First quartile	Median	Third quartile	Upper whisker	Maximum
0	3	9	43	98	118

6. The last value in the boxplot is displayed as a single dot. What does this represent about that data point?

This data point is an outlier.

The Stats tab provides summary statistics for the dataset.

1. Open the Stats tab. What do you notice about the first few entries on this tab?

rad	STATIST		(<u> </u>)
Data	Graph	ı	Stats
			V1/N1
Number	of data points	n	25
	Minimum	Min	0
	First quartile	Ql	3
	Median	Med	9
	Third quartile	QЗ	43
	Maximum	Max	118
	Range	R	118
Inter	rquartile range	IQR	40

The first few values match the values found in the bottom banner of the boxplot.

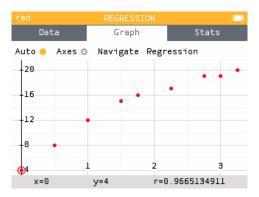
2. Scroll through the list of summary statistics found on the **Stats** tab. Which of the terms or symbols do you recognize?

Student answers will vary. Make note of the difference between statistics for a population (mean, standard deviation, variance) and those for a sample (sample mean, sample standard deviation, sample variance).

Regression

The **Regression** application plots scatterplots and provides the line of best fit.

Open the Regression application. The Regression app also has three tabs at the top of the screen: **Data**, **Graph** and **Stats**.

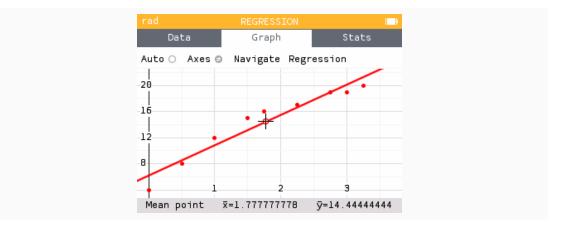

The table below shows the relationship between quiz scores (out of 20) and study time (in hours) for a few students in a class.

Study time (hours)	1.5	3	2.25	1.75	0.5	3.25	1	0	2.75
Score (out of 20)	15	19	17	16	8	20	12	4	19

1. On the **Data** tab, enter the values of "Study time" into the **X1** column and the values of "Score" into the **Y1** column.

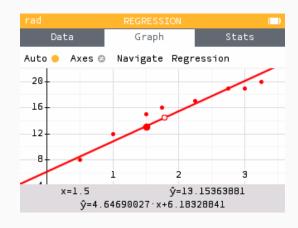
rad		REGRESSIO	V	(<u> </u>)
Dat	а	Graph		Stats
)	a	¥1	_	X2
	1.5		15	
	3		19	
	2.25		17	
	1.75		16	
	0.5		8	
	3.25		20	
	1		12	
	0		4	
	D 75		10	

2. Select the **Graph** tab to view the scatterplot.


- 3. Navigate through the data points. Notice that the values of x and y appear in the bottom banner.
- 4. How would you describe the relationship between Study time and Score?

Calculations — Graphing — Boxplots — Histograms — Regression

There appears to be a positive, linear relationship. The more time a student studies, the higher their quiz score is.


Let's find the line of best fit.

- 1. While viewing the scatterplot on the **Graph** tab, press (a) to open the list of regression models.
- 2. Press 👁 on Linear.

3. Navigate through the data points and onto the line of best fit. What is the regression equation (round to the nearest hundredth)?

Use the \bigcirc and \triangleright keys to navigate through the data points. While on a data point, use the \triangle or \bigtriangledown keys to navigate onto the line of best fit.

The equation of the line of best fit is $\hat{y} = 4.65x + 6.18$

4. Find the equation of the line of best fit in the **Regression** menu.

Press the 💼 key to open	the Regression	menu and find the	e equation of th
	rad	REGRESSION	I
	Data	Graph	Stats
		X1/Y1	
	Ma da 1		
	Model		Linear 🕨
	y=4.6469 Regression a	0027·x+6.183	28841
	r ²	0.934	41483284
	Residual	plot	

We can use the equation of the line to make predictions for scores based on other study times.

1. While in the Regression menu, select Predict Y given X.

rad	REGRESSION		
Data	Graph	Stats	
y=4.6469 Regression	X1/Y1 00027·X+6.18 equation	328841	
r ²	0.9	34148328	4
Residual	. plot		
Predict	Y given X		Þ
E: LV			

2. Predict the quiz score for a student who studied for 2 hours.

Enter 18 for y.

A student who studies for 2 hours is predicted to score a 15.48 on average.

3. Return to the Regression menu and select Find X given predicted Y.

Use the 🗩 key to return the the Regression menu.

rad	REGRESSION	-				
Data	Graph	Stats				
	X1/Y1					
r ²	0.934	1483284				
Residual	. plot					
Predict	Predict Y given X					
Find X g	given predict	edY 🕨				

4. Determine how many hours of studying a student would need in order to earn a score of 18 on the quiz.

It is predicted that to earn an 18, a student must study for 2.54 hours, on average.

The **Stats** tab provides summary statistics for our dataset.

1. Navigate to the **Stats** tab and find the row **Mean** \bar{x} . This reports the mean or average for X1 and Y1.

rad	REGRES	SION	
Data	Graph	۱	Stats
			X1
	Mean	x	1.777778
	Sum	Σ×	16
Sum	of squares	∑×2	38.75
Standar	d deviation	σ	1.070076
	Variance	σ2	1.145062
Sample st	d deviation	s	1.134987
Numbe	r of points	Ν	
	Covariance	COV	
	e	-	

rad			(<u> </u>
Data		Graph	Stats
		X1	Y1
Mean	x	1.777778	14.44444
Sum	Σx	16	130
of squares	∑x2	38.75	2116
deviation	σ	1.070076	5.144816
Variance	σ2	1.145062	26.46914
deviation	s	1.134987	5.456902
of points	Ν		9
Covariance	cov		5.320988

2. What is the average amount of time these students studied (round to the nearest hundredth)?

The average amount of time studied by these students is 1.78 hours.

3. What is the average quiz score for these students (round to the nearest hundredth)?

rad	REGRESSION	l.
Data	Graph	Stats
-		
	X1	Yl
Mean 🛛	1.777778	14.44444
Sum ∑×	16	130
of squares ∑x2	38.75	2116
deviation σ	1.070076	5.144816
Variance o2	1.145062	26.46914
deviation s	1.134987	5.456902
of points N		9
Covariance cov		5.320988

The average score made by these students is 14.44

Keep exploring!

There's a lot more you can do on the NumWorks calculator! Keep exploring the applications and check out the short tutorials at num.works/tutorials.